Time Series API Reference
Functions
EchoStateNetwork(X, Y, Reservoir = 1000;
L2 = 1e-8, alpha = 0.25, SpectralRadius = 1.00, Sparsity = 0.99, Noise = -1.00,
bias = true, burnin = 0)
Creates an echo state network model/object.
ChemometricsTools.RollingWindow
— Method.RollingWindow(samples::Int,windowsize::Int,skip::Int)
Creates a RollingWindow iterator from a number of samples
and a static windowsize
where every iteration skip
steps are skipped. The iterator can be used in for loops to iteratively return indices of a dynamic rolling window.
ChemometricsTools.RollingWindow
— Method.RollingWindow(samples::Int,windowsize::Int)
Creates a RollingWindow iterator from a number of samples
and a static windowsize
. The iterator can be used in for loops to iteratively return indices of a dynamic rolling window.
ChemometricsTools.SimpleAverage
— Method.SimpleAverage( univariate::Array )
ChemometricsTools.SimpleAverage
— Method.SimpleAverage( univariate )
ChemometricsTools.SimpleAverage
— Method.(sa::SimpleAverage)()
Predicts with a naive forecaster model.
ChemometricsTools.EWMA
— Method.EWMA(Initial::Float64, Lambda::Float64) = ewma(Lambda, Initial, Initial, RunningVar(Initial))
Constructs an exponentially weighted moving average object from an vector of scalar property values Initial
and the decay parameter Lambda
. This computes the running statistcs neccesary for creating the EWMA model using the interval provided and updates the center value to the mean of the provided values.
ChemometricsTools.EWMA
— Method.EWMA(Initial::Float64, Lambda::Float64) = ewma(Lambda, Initial, Initial, RunningVar(Initial))
Constructs an exponentially weighted moving average object from an initial scalar property value Initial
and the decay parameter Lambda
. This defaults the center value to be the initial value.
ChemometricsTools.Limits
— Method.Limits(P::ewma; k = 3.0)
This function returns the upper and lower control limits with a k
span of variance for an EWMA object P
.
ChemometricsTools.NaiveForecast
— Method.NaiveForecaster( univariate::Array )
Makes a forecaster model that simply predicts the last value it has seen for all future values.
ChemometricsTools.PredictFn
— Method.PredictFn(model::EchoStateNetwork, X; UseLastState = true, burnin = 0)
This function uses X data to predict Y values from a stored ESN model.
Burnin can be used here, but it simply rejects the first `N` samples from storage/allocation.
UseLastState will employ the last known state from the training set as the first state estimate (reccomended)
ChemometricsTools.TuneRidge
— Function.TuneRidge(Y, model::EchoStateNetwork, L2, burnin = 0 )
This function modifies an ESN model's output weights without reconstructing the dynamic resevoir.
Basically this is a time saver!
ChemometricsTools.Update
— Method.Update( model::naiveforecaster, newdata::Float64 )
ChemometricsTools.Variance
— Method.Variance(P::ewma)
This function returns the EWMA control variance.
ChemometricsTools.update!
— Method.update!( model::NaiveForecaster, newdata::Float64 )
Makes a forecast model that simply predicts the last value it has seen for all future values.
ChemometricsTools.update
— Method.update( model::NaiveForecaster, newdata::Float64 )
returns an updated forecast model that simply predicts the last value it has seen for all future values.
ChemometricsTools.NaiveForecaster
— Method.(nf::NaiveForecaster)()
Predicts with a naive forecaster model.
ChemometricsTools.ewma
— Method.EWMA(P::ewma)(New; train = true)
Provides an EWMA score for a New
scalar value. If train == true
the model is updated to include this new value.
ChemometricsTools.ChangeCenter
— Method.ChangeCenter(P::ewma, new::Float64)
This is a convenience function to update the center of a P
EWMA model, to a new
scalar value.