Regression Models API Reference
Functions
ChemometricsTools.ClassicLeastSquares
— Method.(M::ClassicLeastSquares)(X)
Makes an inference from X
using a ClassicLeastSquares object.
ChemometricsTools.ClassicLeastSquares
— Method.ClassicLeastSquares( X, Y; Bias = false )
Constructs a ClassicLeastSquares regression model of the form Y
= AX
with or without a Bias
term. Returns a CLS object.
ChemometricsTools.LSSVM
— Method.LSSVM( X, Y, Penalty; KernelParameter = 0.0, KernelType = "linear" )
Makes a LSSVM model of the form Y
= AK
with a bias term using a user specified Kernel("linear", or "gaussian") and has an L2 Penalty
. Returns a LSSVM Wrapper for a CLS object.
ChemometricsTools.LSSVM
— Method.(M::LSSVM)(X)
Makes an inference from X
using a LSSVM object.
ChemometricsTools.PartialLeastSquares
— Method.PartialLeastSquares( X, Y; Factors = minimum(size(X)) - 2, tolerance = 1e-8, maxiters = 200 )
Returns a PartialLeastSquares regression model object from arrays X
and Y
.
- PARTIAL LEAST-SQUARES REGRESSION: A TUTORIAL PAUL GELADI and BRUCE R.KOWALSKI. Analytica Chimica Acta, 186, (1986) PARTIAL LEAST-SQUARES REGRESSION:
- Martens H., NÊs T. Multivariate Calibration. Wiley: New York, 1989.
- Re-interpretation of NIPALS results solves PLSR inconsistency problem. Rolf Ergon. Published in Journal of Chemometrics 2009; Vol. 23/1: 72-75
ChemometricsTools.PartialLeastSquares
— Method.(M::PartialLeastSquares)
Makes an inference from X
using a PartialLeastSquares object.
(M::PrincipalComponentRegression)( X )
Makes an inference from X
using a PrincipalComponentRegression object.
PrincipalComponentRegression(PCAObject, Y )
Makes a PrincipalComponentRegression model object from a PCA Object and property value Y
.
ChemometricsTools.RidgeRegression
— Method.RidgeRegression( X, Y, Penalty; Bias = false )
Makes a RidgeRegression model of the form Y
= AX
with or without a Bias
term and has an L2 Penalty
. Returns a CLS object.
ChemometricsTools.RidgeRegression
— Method.(M::RidgeRegression)(X)
Makes an inference from X
using a RidgeRegression object which wraps a ClassicLeastSquares object.
ChemometricsTools.ExtremeLearningMachine
— Function.ExtremeLearningMachine(X, Y, ReservoirSize = 10; ActivationFn = sigmoid)
Returns a ELM regression model object from arrays X
and Y
, with a user specified ReservoirSize
and ActivationFn
.
Extreme learning machine: a new learning scheme of feedforward neural networks. Guang-Bin Huang ; Qin-Yu Zhu ; Chee-Kheong Siew. 2004 IEEE International Joint...
ChemometricsTools.KernelRidgeRegression
— Method.KernelRidgeRegression( X, Y, Penalty; KernelParameter = 0.0, KernelType = "linear" )
Makes a KernelRidgeRegression model of the form Y
= AK
using a user specified Kernel("Linear", or "Guassian") and has an L2 Penalty
. Returns a KRR Wrapper for a CLS object.
ChemometricsTools.MonotoneRegression
— Function.MonotoneRegression(x, w = nothing)
Performs a monotone/isotonic regression on a vector x. This can be weighted with a vector w.
Code was translated directly from: Exceedingly Simple Monotone Regression. Jan de Leeuw. Version 02, March 30, 2017
ChemometricsTools.OrdinaryLeastSquares
— Method.OrdinaryLeastSquares( X, Y; Bias = false )
Makes a ClassicLeastSquares regression model of the form Y
= AX
with or without a Bias
term. Returns a CLS object. This is a wrapper function for CLS, because most other fields refer to this as OLS.
ChemometricsTools.sigmoid
— Method.sigmoid(x)
Applies the sigmoid function to a scalar value X. Returns a scalar. Can be broad-casted over an Array.
ChemometricsTools.ELM
— Method.(M::ELM)(X)
Makes an inference from X
using a ELM object.
ChemometricsTools.KRR
— Method.(M::KRR)(X)
Makes an inference from X
using a KRR object which wraps a ClassicLeastSquares object.