Multiway API Reference
Functions
ChemometricsTools.MultiCenter
— Type.MultiCenter(Z, mode = 1)
Acquires the mean of the specified mode in Z
and returns a transform that will remove those means from any future data.
ChemometricsTools.MultiCenter
— Method.(T::MultiCenter)(Z; inverse = false)
Centers data in Tensor Z
mode-wise according to learned centers in MultiCenter object T
.
ChemometricsTools.MultiScale
— Type.MultiScale(Z, mode = 1)
Acquires the standard deviations of the specified mode in Z
and returns a transform that will scale by those standard deviations from any future data.
ChemometricsTools.MultiScale
— Method.(T::MultiScale)(Z; inverse = false)
Scales data in Tensor Z
mode-wise according to learned standard deviations in MultiScale object T
.
ChemometricsTools.MultilinearPLS
— Method.MultilinearPLS(Y, X; Factors = minimum(size(X)) - 2,
tolerance = 1e-8, maxiters = 200 )
Performs a Multilinear PLS regression from X
and Y
tensors. The number of Factors
, convergence tolerance
, and the maxiters
(maximum iterations) may be set.
Method returns a MultilinearPLS
object.
Notes: - Only Y orders < 2 are currently supported. - X order must be >= 2 - X orders > 3 are currently unreviewed. Please contribute!
Bro, Rasmus. (1996), Multiway calibration. Multilinear PLS. J. Chemometrics, 10: 47-61. doi:10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C
ChemometricsTools.MultilinearPLS
— Method.(M::MultilinearPLS)( X; Factors = M.Factors )
Applies a Multilinear PLS regression object to new X
data with a prescribed number of Factors
. Method returns a matrix of the calibrated size Y
.
Bro, Rasmus. (1996), Multiway calibration. Multilinear PLS. J. Chemometrics, 10: 47-61. doi:10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C
ChemometricsTools.HOOI
— Method.HOOI( X; Factors = 1, maxiters = 100, init = :HOSVD, tolerance = 1e-9 )
Performs multiway PCA aka Higher Order SVD aka Tucker, etc via the Higher Order Orthogonal Iteration
(HOOI) of tensors.
Returns a MultilinearPCA object containing (Core Tensor, Basis Tensors, Explained Variance)
Lieven De Lathauwer, Bart De Moor, and Joos Van-dewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 2000.
ChemometricsTools.HOSVD
— Method.HOSVD(X; Factors = 2)
Performs multilinear PCA aka Higher Order SVD aka Tucker, etc. The number of factors decomposed can be a scalar (repeated across all modes) or a vector/tuple for each mode.
Returns a MultilinearPCA object containing (Core Tensor, Basis Tensors, Explained Variance)
Tucker, L. R. (1964). "The extension of factor analysis to three-dimensional matrices". In N. Frederiksen and H. Gulliksen (Eds.), Contributions to Mathematical Psychology. New York: Holt, Rinehart and Winston: 109–127.
ChemometricsTools.MultiNorm
— Method.MultiNorm(T)
Computes the equivalent of the Froebinius norm on a tensor T
. Returns a scalar.
ChemometricsTools.TensorProduct
— Method.TensorProduct(A, B, IndexA, IndexB; RemoveSingularModes = true,
SizeA = size(A), SizeB = size(B) )
Computes the tensor product of tensors A
& B
across their respective indices.
Note: This is primairily an method for internal use to the library, but feel free to use it for your own needs.
ChemometricsTools.Unfold
— Method.Unfold( Z::Array )
Unfolds a tensor into a 2-tensor.