Ensemble Models API Reference
Functions
ChemometricsTools.RandomForest
— Type.RandomForest(x, y, mode = :classification; gainfn = entropy, trees = 50, maxdepth = 10, minbranchsize = 5, samples = 0.7, maxvars = nothing)
Returns a classification (mode
= :classification) or a regression (mode
= :regression) random forest model. The gainfn
can be entropy or gini for classification or ssd for regression. If the number of maximumvars
is not provided it will default to sqrt(variables) for classification or variables/3 for regression.
The returned object can be used for inference by calling new data on the object as a function.
Breiman, L. Machine Learning (2001) 45: 5. https://doi.org/10.1023/A:1010933404324
ChemometricsTools.RandomForest
— Method.(RF::RandomForest)(X)
Returns bagged prediction vector of random forest model.
ChemometricsTools.MakeIntervals
— Method.MakeIntervals( columns::Int, intervalsize::Int )
Returns an 1-Array of intervals from the range: 1 - columns
of size intervalsize
.
ChemometricsTools.MakeIntervals
— Method.MakeIntervals( columns::Int, intervalsize::Union{Array, Tuple})
Creates an Dictionary whose key is the interval size and values are an array of intervals from the range: 1 - columns
of size intervalsize
.
ChemometricsTools.stackedweights
— Method.stackedweights(ErrVec; power = 2)
Weights stacked interval errors by the reciprocal power
specified. Used for SIPLS, SISPLS, etc.
Ni, W. , Brown, S. D. and Man, R. (2009), Stacked partial least squares regression analysis for spectral calibration and prediction. J. Chemometrics, 23: 505-517. doi:10.1002/cem.1246