Clustering API Reference
K-means Elbow Plot Recipe
using Plots
ExplainedVar = []
for K in 1:10
km = KMeans( X, K; tolerance = 1e-14, maxiters = 1000 )
TCSS = TotalClusterSS( km )
WCSS = WithinClusterSS( km )
#BCSS = BetweenClusterSS( km )
push!(ExplainedVar, WCSS / TCSS)
end
scatter(ExplainedVar, title = "Elbow Plot", ylabel = "WCSS/TCSS", xlabel = "Clusters (#)", label = "K-means" )
Functions
ChemometricsTools.BetweenClusterSS
— Method.BetweenClusterSS( Clustered::ClusterModel )
Returns a scalar of the between cluster sum of squares for a ClusterModel object.
ChemometricsTools.KMeans
— Method.KMeans( X, Clusters; tolerance = 1e-8, maxiters = 200 )
Returns a ClusterModel object after finding clusterings for data in X
via MacQueens K-Means algorithm. Clusters
is the K parameter, or the # of clusters.
MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1. University of California Press. pp. 281–297.
ChemometricsTools.TotalClusterSS
— Method.TotalClusterSS( Clustered::ClusterModel )
Returns a scalar of the total sum of squares for a ClusterModel object.
ChemometricsTools.WithinClusterSS
— Method.WithinClusterSS( Clustered::ClusterModel )
Returns a scalar of the within cluter sum of squares for a ClusterModel object.