Classification Models API Reference
Functions
ChemometricsTools.GaussianDiscriminant
— Method.GaussianDiscriminant(M, X, Y; Factors = nothing)
Returns a GaussianDiscriminant classification model on basis object M
(PCA, LDA) and one hot encoded Y
.
ChemometricsTools.GaussianDiscriminant
— Method.( model::GaussianDiscriminant )( Z; Factors = size(model.ProjectedClassMeans)[2] )
Returns a 1 hot encoded inference from Z
using a GaussianDiscriminant object. This function enforces positive definiteness in the class covariance matrices.
ChemometricsTools.GaussianNaiveBayes
— Method.GaussianNaiveBayes(X,Y)
Returns a GaussianNaiveBayes classification model object from X
and one hot encoded Y
.
ChemometricsTools.GaussianNaiveBayes
— Method.(gnb::GaussianNaiveBayes)(X)
Returns a 1 hot encoded inference from X
using a GaussianNaiveBayes object.
ChemometricsTools.KNN
— Type.KNN( X, Y; DistanceType::String )
DistanceType can be "euclidean", "manhattan". Y
Must be one hot encoded.
Returns a KNN classification model.
ChemometricsTools.KNN
— Method.( model::KNN )( Z; K = 1 )
Returns a 1 hot encoded inference from X
with K
Nearest Neighbors, using a KNN object.
ChemometricsTools.LogisticRegression
— Method.( model::LogisticRegression )( X )
Returns a 1 hot encoded inference from X
using a LogisticRegression object.
ProbabilisticNeuralNetwork( X, Y )
Stores data for a PNN. Y
Must be one hot encoded.
Returns a PNN classification model.
(PNN::ProbabilisticNeuralNetwork)(X; sigma = 0.1)
Returns a 1 hot encoded inference from X
with a probabilistic neural network.
ChemometricsTools.SIMCA
— Method.SIMCA( X, Y;
VarianceExplained = repeat([0.95], size(Y)[2]),
Quantile = repeat([0.95], size(Y)[2]) )
Returns a Soft-Independent Modelling of Class Analogies(SIMCA) classification model object from X
and one hot encoded Y
.
ChemometricsTools.SIMCA
— Method.(s::SIMCA)( X )
Returns a 1 hot encoded inference from X
from a SIMCA model.
ChemometricsTools.ConfidenceEllipse
— Function.ConfidenceEllipse(cov, mean, confidence, axis = [1,2]; pointestimate = 180 )
Returns a 2-D array whose columns are X & Y coordinates of a confidence ellipse. The ellipse is generated by the covariance matrix, mean vector, and the number of points to include in the plot.
ChemometricsTools.LinearPerceptronBatch
— Method.LinearPerceptron(X, Y; LearningRate = 1e-3, MaxIters = 5000)
Returns a batch trained LinearPerceptron classification model object from X
and one hot encoded Y
.
ChemometricsTools.LinearPerceptronSGD
— Method.LinearPerceptronsgd(X, Y; LearningRate = 1e-3, MaxIters = 5000)
Returns a SGD trained LinearPerceptron classification model object from X
and one hot encoded Y
.
MultinomialSoftmaxRegression(X, Y; LearnRate = 1e-3, maxiters = 1000, L2 = 0.0)
Returns a LogisticRegression classification model made by Stochastic Gradient Descent.
ChemometricsTools.linearperceptron
— Method.(L::linearperceptron)(X)
Returns a 1 hot encoded inference from X
using a LinearPerceptron object.