Classification Models

Classification Models API Reference

Functions

GaussianDiscriminant(M, X, Y; Factors = nothing)

Returns a GaussianDiscriminant classification model on basis object M (PCA, LDA) and one hot encoded Y.

source
( model::GaussianDiscriminant )( Z; Factors = size(model.ProjectedClassMeans)[2] )

Returns a 1 hot encoded inference from Z using a GaussianDiscriminant object. This function enforces positive definiteness in the class covariance matrices.

source
GaussianNaiveBayes(X,Y)

Returns a GaussianNaiveBayes classification model object from X and one hot encoded Y.

source
(gnb::GaussianNaiveBayes)(X)

Returns a 1 hot encoded inference from X using a GaussianNaiveBayes object.

source
KNN( X, Y; DistanceType::String )

DistanceType can be "euclidean", "manhattan". Y Must be one hot encoded.

Returns a KNN classification model.

source
( model::KNN )( Z; K = 1 )

Returns a 1 hot encoded inference from X with K Nearest Neighbors, using a KNN object.

source
( model::LogisticRegression )( X )

Returns a 1 hot encoded inference from X using a LogisticRegression object.

source
ProbabilisticNeuralNetwork( X, Y )

Stores data for a PNN. Y Must be one hot encoded.

Returns a PNN classification model.

source
(PNN::ProbabilisticNeuralNetwork)(X; sigma = 0.1)

Returns a 1 hot encoded inference from X with a probabilistic neural network.

source
SIMCA( X, Y;
        VarianceExplained = repeat([0.95], size(Y)[2]),
        Quantile = repeat([0.95], size(Y)[2]) )

Returns a Soft-Independent Modelling of Class Analogies(SIMCA) classification model object from X and one hot encoded Y.

source
(s::SIMCA)( X )

Returns a 1 hot encoded inference from X from a SIMCA model.

source
ConfidenceEllipse(cov, mean, confidence, axis = [1,2]; pointestimate = 180 )

Returns a 2-D array whose columns are X & Y coordinates of a confidence ellipse. The ellipse is generated by the covariance matrix, mean vector, and the number of points to include in the plot.

source
LinearPerceptron(X, Y; LearningRate = 1e-3, MaxIters = 5000)

Returns a batch trained LinearPerceptron classification model object from X and one hot encoded Y.

source
LinearPerceptronsgd(X, Y; LearningRate = 1e-3, MaxIters = 5000)

Returns a SGD trained LinearPerceptron classification model object from X and one hot encoded Y.

source
MultinomialSoftmaxRegression(X, Y; LearnRate = 1e-3, maxiters = 1000, L2 = 0.0)

Returns a LogisticRegression classification model made by Stochastic Gradient Descent.

source
(L::linearperceptron)(X)

Returns a 1 hot encoded inference from X using a LinearPerceptron object.

source